Python TutorialGetting Started with PythonPython Basic SyntaxPython DatatypesPython IndentationPython Collection TypesPython Basic Input and OutputPython Built in Modules and FunctionsPython FunctionsChemPy - python packageCreating Python packagesFunctional Programming in PythonIncompatibilities moving from Python 2 to Python 3IoT Programming with Python and Raspberry PIKivy - Cross-platform Python Framework for NUI DevelopmentMutable vs Immutable (and Hashable) in PythonPyInstaller - Distributing Python CodePython *args and **kwargsPython 2to3 toolPython Abstract Base Classes (abc)Python Abstract syntax treePython Alternatives to switch statement from other languagesPython and ExcelPython Anti-PatternsPython ArcPyPython ArraysPython Asyncio ModulePython Attribute AccessPython AudioPython Binary DataPython Bitwise OperatorsPython Boolean OperatorsPython Checking Path Existence and PermissionsPython ClassesPython CLI subcommands with precise help outputPython Code blocks, execution frames, and namespacesPython Collections modulePython Comments and DocumentationPython Common PitfallsPython Commonwealth ExceptionsPython ComparisonsPython Complex mathPython concurrencyPython ConditionalsPython configparserPython Context Managers (with Statement)Python Copying dataPython CountingPython ctypesPython Data SerializationPython Data TypesPython Database AccessPython Date and TimePython Date FormattingPython DebuggingPython DecoratorsPython Defining functions with list argumentsPython DeploymentPython Deque ModulePython DescriptorPython Design PatternsPython DictionaryPython Difference between Module and PackagePython DistributionPython DjangoPython Dynamic code execution with `exec` and `eval`Python EnumPython ExceptionsPython ExponentiationPython Files & Folders I/OPython FilterPython FlaskPython Functools ModulePython Garbage CollectionPython GeneratorsPython getting start with GZipPython graph-toolPython groupby()Python hashlibPython HeapqPython Hidden FeaturesPython HTML ParsingPython HTTP ServerPython IdiomsPython ijsonPython Immutable datatypes(int, float, str, tuple and frozensets)Python Importing modulesPython Indexing and SlicingPython Input, Subset and Output External Data Files using PandasPython Introduction to RabbitMQ using AMQPStorm

Python Descriptor

From WikiOD

Simple descriptor[edit | edit source]

There are two different types of descriptors. Data descriptors are defined as objects that define both a __get__() and a __set__() method, whereas non-data descriptors only define a __get__() method. This distinction is important when considering overrides and the namespace of an instance's dictionary. If a data descriptor and an entry in an instance's dictionary share the same name, the data descriptor will take precedence. However, if instead a non-data descriptor and an entry in an instance's dictionary share the same name, the instance dictionary's entry will take precedence.

To make a read-only data descriptor, define both get() and set() with the set() raising an AttributeError when called. Defining the set() method with an exception raising placeholder is enough to make it a data descriptor.

descr.__get__(self, obj, type=None) --> value
descr.__set__(self, obj, value) --> None
descr.__delete__(self, obj) --> None

An implemented example:

class DescPrinter(object):
    """A data descriptor that logs activity."""
    _val = 7

    def __get__(self, obj, objtype=None):
        print('Getting ...')
        return self._val

    def __set__(self, obj, val):
        print('Setting', val)
        self._val = val

    def __delete__(self, obj):
        print('Deleting ...')
        del self._val

class Foo():
    x = DescPrinter()       

i = Foo()
# Getting ...
# 7

i.x = 100
# Setting 100
# Getting ...
# 100

del i.x
# Deleting ...
# Getting ...
# 7

Two-way conversions[edit | edit source]

Descriptor objects can allow related object attributes to react to changes automatically.

Suppose we want to model an oscillator with a given frequency (in Hertz) and period (in seconds). When we update the frequency we want the period to update, and when we update the period we want the frequency to update:

 >>> oscillator = Oscillator(freq=100.0)  # Set frequency to 100.0 Hz
>>> oscillator.period  # Period is 1 / frequency, i.e. 0.01 seconds
>>> oscillator.period = 0.02  # Set period to 0.02 seconds
>>> oscillator.freq # The frequency is automatically adjusted
>>> oscillator.freq = 200.0  # Set the frequency to 200.0 Hz
>>> oscillator.period  # The period is automatically adjusted

We pick one of the values (frequency, in Hertz) as the "anchor," i.e. the one that can be set with no conversion, and write a descriptor class for it:

class Hertz(object):
    def __get__(self, instance, owner):
        return self.value

    def __set__(self, instance, value):
        self.value = float(value)

The "other" value (period, in seconds) is defined in terms of the anchor. We write a descriptor class that does our conversions:

class Second(object):
    def __get__(self, instance, owner):
        # When reading period, convert from frequency
        return 1 / instance.freq

    def __set__(self, instance, value):
        # When setting period, update the frequency
        instance.freq = 1 / float(value)

Now we can write the Oscillator class:

class Oscillator(object):
    period = Second()  # Set the other value as a class attribute

    def __init__(self, freq):
        self.freq = Hertz()  # Set the anchor value as an instance attribute
        self.freq = freq  # Assign the passed value - self.period will be adjusted