Python TutorialGetting Started with PythonPython Basic SyntaxPython DatatypesPython IndentationPython Collection TypesPython Basic Input and OutputPython Built in Modules and FunctionsPython FunctionsChemPy - python packageCreating Python packagesFunctional Programming in PythonIncompatibilities moving from Python 2 to Python 3IoT Programming with Python and Raspberry PIKivy - Cross-platform Python Framework for NUI DevelopmentMutable vs Immutable (and Hashable) in PythonPyInstaller - Distributing Python CodePython *args and **kwargsPython 2to3 toolPython Abstract Base Classes (abc)Python Abstract syntax treePython Alternatives to switch statement from other languagesPython and ExcelPython Anti-PatternsPython ArcPyPython ArraysPython Asyncio ModulePython Attribute AccessPython AudioPython Binary DataPython Bitwise OperatorsPython Boolean OperatorsPython Checking Path Existence and PermissionsPython ClassesPython CLI subcommands with precise help outputPython Code blocks, execution frames, and namespacesPython Collections modulePython Comments and DocumentationPython Common PitfallsPython Commonwealth ExceptionsPython ComparisonsPython Complex mathPython concurrencyPython ConditionalsPython configparserPython Context Managers (with Statement)Python Copying dataPython CountingPython ctypesPython Data SerializationPython Data TypesPython Database AccessPython Date and TimePython Date FormattingPython DebuggingPython DecoratorsPython Defining functions with list argumentsPython DeploymentPython Deque ModulePython DescriptorPython Design PatternsPython DictionaryPython Difference between Module and PackagePython DistributionPython DjangoPython Dynamic code execution with `exec` and `eval`Python EnumPython ExceptionsPython ExponentiationPython Files & Folders I/OPython FilterPython FlaskPython Functools ModulePython Garbage CollectionPython GeneratorsPython getting start with GZipPython graph-toolPython groupby()Python hashlibPython HeapqPython Hidden FeaturesPython HTML ParsingPython HTTP ServerPython IdiomsPython ijsonPython Immutable datatypes(int, float, str, tuple and frozensets)Python Importing modulesPython Indexing and SlicingPython Input, Subset and Output External Data Files using PandasPython Introduction to RabbitMQ using AMQPStorm

Python Binary Data

From WikiOD

Syntax[edit | edit source]

  • pack(fmt, v1, v2, ...)
  • unpack(fmt, buffer)

Format a list of values into a byte object[edit | edit source]

from struct import pack

print(pack('I3c', 123, b'a', b'b', b'c'))  # b'{\x00\x00\x00abc'

Unpack a byte object according to a format string[edit | edit source]

from struct import unpack

print(unpack('I3c', b'{\x00\x00\x00abc'))  # (123, b'a', b'b', b'c')

Packing a structure[edit | edit source]

The module "struct" provides facility to pack python objects as contiguous chunk of bytes or dissemble a chunk of bytes to python structures.

The pack function takes a format string and one or more arguments, and returns a binary string. This looks very much like you are formatting a string except that the output is not a string but a chunk of bytes.

import struct
import sys
print "Native byteorder: ", sys.byteorder
# If no byteorder is specified, native byteorder is used
buffer = struct.pack("ihb", 3, 4, 5)
print "Byte chunk: ", repr(buffer)
print "Byte chunk unpacked: ", struct.unpack("ihb", buffer)
# Last element as unsigned short instead of unsigned char ( 2 Bytes)
buffer = struct.pack("ihh", 3, 4, 5)
print "Byte chunk: ", repr(buffer)


Native byteorder: little Byte chunk: '\x03\x00\x00\x00\x04\x00\x05' Byte chunk unpacked: (3, 4, 5) Byte chunk: '\x03\x00\x00\x00\x04\x00\x05\x00'

You could use network byte order with data received from network or pack data to send it to network.

import struct
# If no byteorder is specified, native byteorder is used
buffer = struct.pack("hhh", 3, 4, 5)
print "Byte chunk native byte order: ", repr(buffer)
buffer = struct.pack("!hhh", 3, 4, 5)
print "Byte chunk network byte order: ", repr(buffer)


Byte chunk native byte order: '\x03\x00\x04\x00\x05\x00'

Byte chunk network byte order: '\x00\x03\x00\x04\x00\x05'

You can optimize by avoiding the overhead of allocating a new buffer by providing a buffer that was created earlier.

import struct
from ctypes import create_string_buffer
bufferVar = create_string_buffer(8)
bufferVar2 = create_string_buffer(8)
# We use a buffer that has already been created
# provide format, buffer, offset and data
struct.pack_into("hhh", bufferVar, 0, 3, 4, 5)
print "Byte chunk: ", repr(bufferVar.raw)
struct.pack_into("hhh", bufferVar2, 2, 3, 4, 5)
print "Byte chunk: ", repr(bufferVar2.raw)


Byte chunk: '\x03\x00\x04\x00\x05\x00\x00\x00'

Byte chunk: '\x00\x00\x03\x00\x04\x00\x05\x00'