Python_Language

Python TutorialGetting Started with PythonPython Basic SyntaxPython DatatypesPython IndentationPython Collection TypesPython Basic Input and OutputPython Built in Modules and FunctionsPython FunctionsChemPy - python packageCreating Python packagesFunctional Programming in PythonIncompatibilities moving from Python 2 to Python 3IoT Programming with Python and Raspberry PIKivy - Cross-platform Python Framework for NUI DevelopmentMutable vs Immutable (and Hashable) in PythonPyInstaller - Distributing Python CodePython *args and **kwargsPython 2to3 toolPython Abstract Base Classes (abc)Python Abstract syntax treePython Alternatives to switch statement from other languagesPython and ExcelPython Anti-PatternsPython ArcPyPython ArraysPython Asyncio ModulePython Attribute AccessPython AudioPython Binary DataPython Bitwise OperatorsPython Boolean OperatorsPython Checking Path Existence and PermissionsPython ClassesPython CLI subcommands with precise help outputPython Code blocks, execution frames, and namespacesPython Collections modulePython Comments and DocumentationPython Common PitfallsPython Commonwealth ExceptionsPython ComparisonsPython Complex mathPython concurrencyPython ConditionalsPython configparserPython Context Managers (with Statement)Python Copying dataPython CountingPython ctypesPython Data SerializationPython Data TypesPython Database AccessPython Date and TimePython Date FormattingPython DebuggingPython DecoratorsPython Defining functions with list argumentsPython DeploymentPython Deque ModulePython DescriptorPython Design PatternsPython DictionaryPython Difference between Module and PackagePython DistributionPython DjangoPython Dynamic code execution with `exec` and `eval`Python EnumPython ExceptionsPython ExponentiationPython Files & Folders I/OPython FilterPython FlaskPython Functools ModulePython Garbage CollectionPython GeneratorsPython getting start with GZipPython graph-toolPython groupby()Python hashlibPython HeapqPython Hidden FeaturesPython HTML ParsingPython HTTP ServerPython IdiomsPython ijsonPython Immutable datatypes(int, float, str, tuple and frozensets)Python Importing modulesPython Indexing and SlicingPython Input, Subset and Output External Data Files using PandasPython Introduction to RabbitMQ using AMQPStorm



Python Attribute Access

From WikiOD

Syntax[edit | edit source]

  • x.title # Accesses the title attribute using the dot notation
  • x.title = "Hello World" # Sets the property of the title attribute using the dot notation
  • @property # Used as a decorator before the getter method for properties
  • @title.setter # Used as a decorator before the setter method for properties

Basic Attribute Access using the Dot Notation[edit | edit source]

Let's take a sample class.

class Book:
    def __init__(self, title, author):
        self.title = title
        self.author = author

book1 = Book(title="Right Ho, Jeeves", author="P.G. Wodehouse")

In Python you can access the attribute title of the class using the dot notation.

>>> book1.title 
'P.G. Wodehouse'

If an attribute doesn't exist, Python throws an error:

>>> book1.series
Traceback  (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Book' object has no attribute 'series'

Setters, Getters & Properties[edit | edit source]

For the sake of data encapsulation, sometimes you want to have an attribute which value comes from other attributes or, in general, which value shall be computed at the moment. The standard way to deal with this situation is to create a method, called getter or a setter.

class Book:
    def __init__(self, title, author):
        self.title = title
        self.author = author

In the example above, it's easy to see what happens if we create a new Book that contains a title and a author. If all books we're to add to our Library have authors and titles, then we can skip the getters and setters and use the dot notation. However, suppose we have some books that do not have an author and we want to set the author to "Unknown". Or if they have multiple authors and we plan to return a list of authors.

In this case we can create a getter and a setter for the author attribute.

class P:
    def __init__(self,title,author):
        self.title = title
        self.setAuthor(author)

    def get_author(self):
        return self.author

    def set_author(self, author):
        if not author: 
            self.author = "Unknown"
        else:
            self.author = author

This scheme is not recommended.

One reason is that there is a catch: Let's assume we have designed our class with the public attribute and no methods. People have already used it a lot and they have written code like this:

>>> book = Book(title="Ancient Manuscript", author="Some Guy")
>>> book.author = ""  #Cos Some Guy didn't write this one!

Now we have a problem. Because author is not an attribute! Python offers a solution to this problem called properties. A method to get properties is decorated with the @property before it's header. The method that we want to function as a setter is decorated with @attributeName.setter before it.

Keeping this in mind, we now have our new updated class.

class Book:
    def __init__(self, title, author):
        self.title = title
        self.author = author

    @property
    def author(self):
        return self.__author

    @author.setter
    def author(self, author):
        if not author: 
            self.author = "Unknown"
        else:
            self.author = author

Note, normally Python doesn't allow you to have multiple methods with the same name and different number of parameters. However, in this case Python allows this because of the decorators used.

If we test the code:

>>> book = Book(title="Ancient Manuscript", author="Some Guy")
>>> book.author = ""  #Cos Some Guy didn't write this one!
>>> book.author 
Unknown

Credit:Stack_Overflow_Documentation