C++ TutorialBasic input/output in c++C++ AlignmentC++ Argument Dependent Name LookupC++ Arithmitic MetaprogrammingC++ ArraysC++ Atomic TypesC++ AttributesC++ autoC++ Basic Type KeywordsC++ Bit fieldsC++ Bit ManipulationC++ Bit OperatorsC++ Build SystemsC++ C incompatibilitiesC++ C++11 Memory ModelC++ Callable ObjectsC++ Classes/StructuresC++ Client server examplesC++ Common compile/linker errors (GCC)C++ Compiling and BuildingC++ Concurrency with OpenMPC++ Const CorrectnessC++ const keywordC++ Constant class member functionsC++ constexprC++ ContainersC++ Copy ElisionC++ Copying vs AssignmentC++ Curiously Recurring Template Pattern (CRTP)C++ Date and time using chrono headerC++ Debugging and Debug-prevention Tools & TechniquesC++ decltypeC++ Digit separatorsC++ EnumerationC++ ExceptionsC++ Explicit type conversionsC++ Expression templatesC++ File I/OC++ Floating Point ArithmeticC++ Flow ControlC++ Fold ExpressionsC++ Friend keywordC++ function call by value vs. call by referenceC++ Function OverloadingC++ Function Template OverloadingC++ Futures and PromisesC++ Header FilesC++ Implementation-defined behaviorC++ Inline functionsC++ Inline variablesC++ IterationC++ IteratorsC++ KeywordsC++ LambdasC++ Layout of object typesC++ Linkage specificationsC++ LiteralsC++ LoopsC++ Memory managementC++ MetaprogrammingC++ Move SemanticsC++ mutable keywordC++ MutexesC++ NamespacesC++ Non-Static Member FunctionsC++ One Definition Rule (ODR)C++ Operator OverloadingC++ operator precedenceC++ OptimizationC++ Overload resolutionC++ Parameter packsC++ Perfect ForwardingC++ Pimpl IdiomC++ PointersC++ Pointers to membersC++ PolymorphismC++ PreprocessorC++ ProfilingC++ RAII: Resource Acquisition Is InitializationC++ Random number generationC++ Recursive MutexC++ Refactoring TechniquesC++ ReferencesC++ Regular expressionsC++ Resource ManagementC++ Return Type CovarianceC++ Returning several values from a functionC++ RTTI: Run-Time Type InformationC++ Scopes

C++ Scopes

From WikiOD

Global variables[edit | edit source]

To declare a single instance of a variable which is accessible in different source files, it is possible to make it in the global scope with keyword extern. This keyword says the compiler that somewhere in the code there is a definition for this variable, so it can be used everywhere and all write/read will be done in one place of memory.

// File my_globals.h:

#ifndef __MY_GLOBALS_H__
#define __MY_GLOBALS_H__

extern int circle_radius; // Promise to the compiler that circle_radius 
                          // will be defined somewhere



// File foo1.cpp:

#include "my_globals.h"

int circle_radius = 123; // Defining the extern variable


// File main.cpp:

#include "my_globals.h"
#include <iostream>

int main()
    std::cout << "The radius is: " << circle_radius << "\n";'
    return 0;


The radius is: 123

Simple block scope[edit | edit source]

The scope of a variable in a block { ... }, begins after declaration and ends at the end of the block. If there is nested block, the inner block can hide the scope of a variable which is declared in the outer block.

    int x = 100;
    //   ^
    //   Scope of `x` begins here
}   // <- Scope of `x` ends here

If a nested block starts within an outer block, a new declared variable with the same name which is before in the outer class, hides the first one.

    int x = 100;

        int x = 200;

        std::cout << x;  // <- Output is 200

    std::cout << x;  // <- Output is 100