C++ TutorialBasic input/output in c++C++ AlignmentC++ Argument Dependent Name LookupC++ Arithmitic MetaprogrammingC++ ArraysC++ Atomic TypesC++ AttributesC++ autoC++ Basic Type KeywordsC++ Bit fieldsC++ Bit ManipulationC++ Bit OperatorsC++ Build SystemsC++ C incompatibilitiesC++ C++11 Memory ModelC++ Callable ObjectsC++ Classes/StructuresC++ Client server examplesC++ Common compile/linker errors (GCC)C++ Compiling and BuildingC++ Concurrency with OpenMPC++ Const CorrectnessC++ const keywordC++ Constant class member functionsC++ constexprC++ ContainersC++ Copy ElisionC++ Copying vs AssignmentC++ Curiously Recurring Template Pattern (CRTP)C++ Date and time using chrono headerC++ Debugging and Debug-prevention Tools & TechniquesC++ decltypeC++ Digit separatorsC++ EnumerationC++ ExceptionsC++ Explicit type conversionsC++ Expression templatesC++ File I/OC++ Floating Point ArithmeticC++ Flow ControlC++ Fold ExpressionsC++ Friend keywordC++ function call by value vs. call by referenceC++ Function OverloadingC++ Function Template OverloadingC++ Futures and PromisesC++ Header FilesC++ Implementation-defined behaviorC++ Inline functionsC++ Inline variablesC++ IterationC++ IteratorsC++ KeywordsC++ LambdasC++ Layout of object typesC++ Linkage specificationsC++ LiteralsC++ LoopsC++ Memory managementC++ MetaprogrammingC++ Move SemanticsC++ mutable keywordC++ MutexesC++ NamespacesC++ Non-Static Member FunctionsC++ One Definition Rule (ODR)C++ Operator OverloadingC++ operator precedenceC++ OptimizationC++ Overload resolutionC++ Parameter packsC++ Perfect ForwardingC++ Pimpl IdiomC++ PointersC++ Pointers to membersC++ PolymorphismC++ PreprocessorC++ ProfilingC++ RAII: Resource Acquisition Is InitializationC++ Random number generationC++ Recursive MutexC++ Refactoring TechniquesC++ ReferencesC++ Regular expressionsC++ Resource ManagementC++ Return Type CovarianceC++ Returning several values from a functionC++ RTTI: Run-Time Type InformationC++ Scopes

C++ Callable Objects

From WikiOD

Callable objects are the collection of all C++ structures which can be used as a function. In practice, this are all things you can pass to the C++17 STL function invoke() or which can be used in the constructor of std::function, this includes: Function pointers, Classes with operator(), Classes with implicit conversions, References to functions, Pointers to member functions, Pointers to member data, lambdas. The callable objects are used in many STL algorithms as predicate.

Remarks[edit | edit source]

A very useful talk by Stephan T. Lavavej (<functional>: What's New, And Proper Use) (Slides) leads to the base of this documentation.

Function Pointers[edit | edit source]

Function pointers are the most basic way of passing functions around, which can also be used in C. (See the C documentation for more details).

For the purpose of callable objects, a function pointer can be defined as:

typedef returnType(*name)(arguments);                       // All
using name = returnType(*)(arguments);                      // <= C++11
using name = std::add_pointer<returnType(arguments)>::type; // <= C++11
using name = std::add_pointer_t<returnType(arguments)>;     // <= C++14

If we would be using a function pointer for writing our own vector sort, it would look like:

using LessThanFunctionPtr = std::add_pointer_t<bool(int, int)>;
void sortVectorInt(std::vector<int>&v, LessThanFunctionPtr lessThan) {
    if (v.size() < 2)
    if (v.size() == 2) {
        if (!lessThan(v.front(), v.back())) // Invoke the function pointer
            std::swap(v.front(), v.back());
    std::sort(v, lessThan);

bool lessThanInt(int lhs, int rhs) { return lhs < rhs; }
sortVectorInt(vectorOfInt, lessThanInt); // Passes the pointer to a free function

struct GreaterThanInt {
   static bool cmp(int lhs, int rhs) { return lhs > rhs; }
sortVectorInt(vectorOfInt, &GreaterThanInt::cmp); // Passes the pointer to a static member function

Alternatively, we could have invoked the function pointer one of following ways:

  • (*lessThan)(v.front(), v.back()) // All
  • std::invoke(lessThan, v.front(), v.back()) // <= C++17

Classes with operator() (Functors)[edit | edit source]

Every class which overloads the operator() can be used as a function object. These classes can be written by hand (often referred to as functors) or automatically generated by the compiler by writing Lambdas from C++11 on.

struct Person {
    std::string name;
    unsigned int age;

// Functor which find a person by name
struct FindPersonByName {
    FindPersonByName(const std::string &name) : _name(name) {}

    // Overloaded method which will get called
    bool operator()(const Person &person) const {
         return person.name == _name;
    std::string _name;

std::vector<Person> v; // Assume this contains data
std::vector<Person>::iterator iFind =
    std::find_if(v.begin(), v.end(), FindPersonByName("Foobar"));
// ...

As functors have their own identity, they cannot be put in a typedef and these have to be accepted via template argument. The definition of std::find_if can look like:

template<typename Iterator, typename Predicate>
Iterator find_if(Iterator begin, Iterator end, Predicate &predicate) {
     for (Iterator i = begin, i != end, ++i)
         if (predicate(*i))
             return i;
     return end;

From C++17 on, the calling of the predicate can be done with invoke: std::invoke(predicate, *i).